截断部分相干双曲余弦高斯光束在非 Kolmogorov 湍流中的传输

陶汝茂 司 磊 马阎星 周 朴 刘泽金

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 研究了截断部分相干双曲余弦高斯光束在非 Kolmogorov 湍流中的传输。基于广义惠更斯-菲涅耳原理,推导了截断部分相干双曲余弦高斯光束在非 Kolmogorov 湍流中传输的光强分布和桶中功率的解析表达式。通过数 值模拟,研究了截断光束参数和非 Kolmogorov 湍流参数对传输性能的影响。研究结果可以为实际的工程应用如 远程遥感和自由空间通信等提供一定的参考。

关键词 大气光学;双曲余弦高斯光束;湍流;截断

中图分类号 TN249 文献标识码 A doi: 10.3788/CJL201340.0502008

Propagation of Truncated Partially Coherent Cosh-Gaussian Beam in Non-Kolmogorov Turbulence

Tao Rumao Si Lei Ma Yanxing Zhou Pu Liu Zejin

(College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract Propagation of partially coherent cosh-Gaussian beam in non-Kolmogorov turbulence is studied theoretically. Based on extended Huygens-Fresnel principle, the averaged intensity and the power in the bucket of partially coherent cosh-Gaussian beam in non-Kolmogorov turbulence are derived. The influence of beam parameters and turbulence parameters is studied numerically. The investigation presents a reference for engineering applications, for example the remote sensing and the free-space communication.

Key words atmospheric optics; cosh-Gaussian laser beam; turbulence; truncation **OCIS codes** 010.1330; 010.1300; 010.3310

1 引 言

在远距离遥感、成像和通信等系统中,研究光束 在大气湍流中的传输特性是非常重要的。过去的几 十年里,研究人员开展了大量光束大气传输的理论 和实验工作^[1~20]。在前述研究中,广泛采用 Kolmogorov功率谱模型描述大气湍流。然而,最近 大量的实验研究表明:在实际大气中,并不是所有的 大气湍流都能采用上述模型描述,而且当光束沿着 垂直方向传输时,湍流展现出很强的非 Kolmogorov 特征^[21~23]。Toselli等^[22]利用广义指数和广义幅度 因子,引入了非 Kolmogorov 功率谱来描述大气湍 流的模型,当指数 $\alpha = 11/3$ 时,该功率谱与 Kolmogorov 功率谱等价。基于非 Kolmogorov 功 率谱模型的光束传输研究表明,光束在非 Kolmogorov 湍流中传输的特性不同于 Kolmogorov 湍流中的传输特性^[24~30]。同时,完全相干双曲余弦 高斯光束可以通过改变参数获得在很多重要应用中 适用的光强分布,因而得到了广泛的研究^[31~34]。但 是截断部分相干双曲余弦高斯光束在非 Kolmogorov 湍流中的传输研究尚未有公开报道。

收稿日期: 2012-11-10; 收到修改稿日期: 2013-01-10

基金项目:国防科学技术大学优秀研究生创新项目(B120704)资助课题。

作者简介:陶汝茂(1987—),男,博士研究生,主要从事高能激光技术方面的研究。E-mail: taorumao@sohu.com

导师简介:刘泽金(1963—),男,教授,博士生导师,主要从事高能激光技术、相干合成等方面的研究。

E-mail: zejinliu@vip.sina.com(通信联系人)

本文基于广义惠更斯-菲涅耳原理,推导了截断部分 相干双曲余弦高斯光束在非 Kolmogonov 湍流中传 输的解析表达式。通过数值模拟,研究了截断光束 参数和非 Kolmogonov 谱参数对传输性能的影响。

2 理论推导

完全相干双曲余弦高斯光束光场分布可表示 为^[31~33]

$$u(\mathbf{r},0) = \cosh(\mathbf{\Omega}_0 x) \cosh(\mathbf{\Omega}_0 y) \exp\left(-\frac{x^2 + y^2}{w_0^2}\right),$$
(1)

式中 Ω_0 是双曲余弦参数, w_0 是高斯振幅分布的束腰宽度。

引入硬孔径函数 $H(\mathbf{r})$,

$$H(\mathbf{r}) = \sum_{p=1}^{M} A_p \exp\left(-\frac{B_p \|\mathbf{r}\|^2}{a_0^2}\right), \qquad (2)$$

式中 a₀ 为截断孔径半径,A_p和B_p为展开系数,其值 可直接通过数值优化得到,文献[35,36]给出了其 取值表。对于一个硬孔径,M = 10即可以获得精确 结果。因此,截断完全相干双曲余弦高斯光束可以 表示为

$$u(\mathbf{r},0) = \sum_{p=1}^{M} A_{p} \cosh(\Omega_{0} x) \cosh(\Omega_{0} y) \exp\left[-\frac{B_{p}(x^{2}+y^{2})}{a_{0}^{2}}\right] \exp\left(-\frac{x^{2}+y^{2}}{w_{0}^{2}}\right).$$
(3)

引入复空间相干度 exp{ $-[(x_1 - x_2)^2 + (y_1 - y_2)^2]/2\sigma_0^2$ },根据(3)式,截断部分相干双曲余弦高斯 光束互谱密度可以表示为

$$W(\mathbf{r}_{1},\mathbf{r}_{2},0) = \sum_{p=1}^{M} \sum_{q=1}^{M} A_{p} A_{q}^{*} W_{x}(x_{1},x_{2},0) W_{y}(y_{1},y_{2},0), \qquad (4)$$

式中

$$W_{X}(X_{1}, X_{2}, 0) = \cosh[\Omega_{0}(X_{1})] \cosh[\Omega_{0}(X_{2})] \exp\left(-\frac{X_{1}^{2} + X_{2}^{2}}{\omega_{0}^{2}}\right) \times \exp\left(-\frac{B_{p}X_{1}^{2} + B_{q}^{*}X_{2}^{2}}{a_{0}^{2}}\right) \exp\left[-\frac{(X_{1} - X_{2})^{2}}{2\sigma_{0}^{2}}\right] \exp\left[-\frac{ik(X_{1}^{2} - X_{2}^{2})}{2F}\right], \quad X = x, y, \quad (5)$$

式中 o₀ 表征光束相干性, F 为焦距。

Ф

根据广义惠更斯-菲涅耳原理,光束的互谱密度传输可以表示为[3~10]

$$W(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{z}) = \left(\frac{k}{2\pi z}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{r}_{1}' d\mathbf{r}_{2}' W(\mathbf{r}_{1}',\mathbf{r}_{2}',0) \exp\left\{\frac{\mathrm{i}k}{2z} \left[(\mathbf{r}_{1}-\mathbf{r}_{1}')^{2}-(\mathbf{r}_{2}-\mathbf{r}_{2}')^{2}\right]\right\} \times \left(\exp\left[\psi(\mathbf{r}_{1},\mathbf{r}_{1}')+\psi^{*}(\mathbf{r}_{2},\mathbf{r}_{2}')\right]\right),$$
(6)

式中 λ 是波长,*k*是波数(*k* = 2 π/λ)。 ϕ (**r**₁,**r**₁)是由湍流介质特性决定的复相位函数。〈〉表示湍流介质的系综 平均,

$$\langle \exp[\psi(\mathbf{r}_{1},\mathbf{r}_{1}') + \psi^{*}(\mathbf{r}_{2},\mathbf{r}_{2}')] \rangle = \exp\{-4\pi^{2}k^{2}z \int_{0}^{1} \int_{0}^{\infty} d\mathbf{k} d\boldsymbol{\xi} \Phi_{n}(\mathbf{\kappa},\alpha) \{1 - J_{0}[\mathbf{\kappa}|(1-\boldsymbol{\xi})(\mathbf{r}_{2}-\mathbf{r}_{1}) + \boldsymbol{\xi}(\mathbf{r}_{2}'-\mathbf{r}_{1}')|]\} \} = \exp\{-T(\alpha,z)[(\mathbf{r}_{2}-\mathbf{r}_{1})^{2} + (\mathbf{r}_{2}-\mathbf{r}_{1})(\mathbf{r}_{2}'-\mathbf{r}_{1}') + (\mathbf{r}_{2}'-\mathbf{r}_{1}')^{2}]\},$$
(7)

式中 $T(\alpha, z) = \frac{\pi^2 k^2 z}{3} \int_{0}^{\infty} \kappa^3 \Phi_n(\kappa, \alpha) d\kappa, \kappa$ 是二维空间频率的大小, J₀ 是第一类零阶贝塞尔函数, $\Phi_n(\kappa, \alpha)$ 表示大

气湍流的折射涨落的空间功率谱。考虑内尺度和外尺度效应,非 Kolmogorov 功率谱为^[24,25]

$$H_{n}(\boldsymbol{\kappa},\boldsymbol{\alpha}) = H(\boldsymbol{\alpha})\widetilde{C}_{n}^{2}\exp(-\boldsymbol{\kappa}^{2}/\boldsymbol{\kappa}_{m}^{2})(\boldsymbol{\kappa}^{2}+\boldsymbol{\kappa}_{0}^{2})^{-a/2}, \quad 0 \leqslant \boldsymbol{\kappa} < \infty, 3 < \boldsymbol{\alpha} < 4,$$
(8)

式中 $H(\alpha) = \Gamma(\alpha - 1)\cos(\alpha \pi/2)/(4\pi^2), \Gamma(\bullet)$ 为伽玛函数。 $\kappa_0 = 2\pi/L_0, \kappa_m = c(\alpha)/l_0, c(\alpha) = \{\Gamma[(5-\alpha)/2] \bullet H(\alpha) \cdot 2\pi/3\}^{1/(\alpha-5)}, l_0$ 和 L_0 分别是内尺度和外尺度。 \tilde{C}_n^2 是广义结构参数,单位为 m^{3-\alpha}。将(8) 式代入 $T(\alpha,z)$ 表达 式中可得^[24,25]

$$T(\alpha,z) = \frac{1}{3}\pi^{2}k^{2}z \left[\frac{A(\alpha)\widetilde{C}_{n}^{2}}{2} \frac{\kappa_{m}^{2-\alpha}\beta \exp\left(\frac{\kappa_{0}^{2}}{\kappa_{m}^{2}}\right)\Gamma\left(2-\frac{\alpha}{2},\frac{\kappa_{0}^{2}}{\kappa_{m}^{2}}\right)-2\kappa_{0}^{4-\alpha}}{\alpha-2} \right],$$
(9)

式中 $\beta = 2\kappa_0^2 - 2\kappa_m^2 + \alpha \kappa_m^2$, $\Gamma(\bullet, \bullet)$ 为不完全伽玛函数。 联立(4)~(9)式可得

$$W(\mathbf{r}_{1},\mathbf{r}_{2},z) = \sum_{p=1}^{M} \sum_{q=1}^{M} A_{p} A_{q}^{*} W_{x}(x_{1},x_{2},z) W_{y}(y_{1},y_{2},z), \qquad (10)$$

$$W_{X}(X_{1}, X_{2}, z) = \frac{k}{8z \sqrt{A'_{1}A'_{2} - B'^{2}}} \sum_{m=0}^{1} \sum_{n=0}^{1} \exp\left\{\frac{\Omega_{0}^{2}\left[A'_{1} + A'_{2} + 2(-1)^{m+n}B'\right]}{4(A'_{1}A'_{2} - B'^{2})}\right\} \times \exp(D_{1}X_{1}^{2} + 2F_{1}X_{1} + 2GX_{1}X_{2} + 2F_{2}X_{2} + D_{2}X_{2}^{2}), \quad X = x, y,$$
(11)

式中

$$A_{1}^{\prime} = \frac{B_{p}}{a_{0}^{2}} + \frac{1}{w_{0}^{2}} + \frac{1}{2\sigma_{0}^{2}} + \frac{ik}{2F} - \frac{ik}{2z} + T(\alpha, z), \qquad (12)$$

$$A'_{2} = \frac{B_{q}^{*}}{a_{0}^{2}} + \frac{1}{w_{0}^{2}} + \frac{1}{2\sigma_{0}^{2}} - \frac{ik}{2F} + \frac{ik}{2z} + T(\alpha, z), \qquad (13)$$

$$B' = \frac{1}{2\sigma_0^2} + T(\alpha, z),$$
(14)

$$C = -T(\alpha, z) + \frac{\mathrm{i}k}{z},\tag{15}$$

$$D_{1} = \frac{[T(\alpha,z)]^{2}A_{1}' + 2T(\alpha,z)B'C^{*} + A_{2}'(C^{*})^{2}}{4(A_{1}'A_{2}' - B'^{2})} - T(\alpha,z) + \frac{ik}{2z},$$
(16)

$$D_{2} = \frac{[T(\alpha,z)]^{2}A_{2}' + 2T(\alpha,z)B'C + A_{1}'C^{2}}{4(A_{1}'A_{2}' - B'^{2})} - T(\alpha,z) - \frac{\mathrm{i}k}{2z},$$
(17)

$$F_{1} = \frac{(-1)^{m} \Omega_{0} A_{2}^{\prime} C^{*} + (-1)^{n} \Omega_{0} B^{\prime} C^{*} + (-1)^{m} \Omega_{0} T(\alpha, z) B^{\prime} + (-1)^{n} \Omega_{0} T(\alpha, z) A_{1}^{\prime}}{4(A_{1}^{\prime} A_{2}^{\prime} - B^{\prime 2})},$$
(18)

$$F_{2} = \frac{(-1)^{n} \Omega_{0} A_{1}^{\prime} C + (-1)^{m} \Omega_{0} B^{\prime} C + (-1)^{n} \Omega_{0} T(\alpha, z) B^{\prime} + (-1)^{m} \Omega_{0} T(\alpha, z) A_{2}^{\prime}}{4(A_{1}^{\prime} A_{2}^{\prime} - B^{\prime 2})},$$
(19)

$$G = \frac{T(\alpha, z)A_{1}'C + B'CC^{*} + B'[T(\alpha, z)]^{2} + T(\alpha, z)A_{2}'C^{*}}{4(A_{1}'A_{2}' - B'^{2})} + T(\alpha, z).$$
(20)

令 $r_2 = r_1$,由(10),(11)式可得平均光强分布为

$$\langle I(\mathbf{r},z)\rangle = \sum_{p=1}^{M} \sum_{q=1}^{M} A_{p} A_{q}^{*} \langle I_{x}(x,z)\rangle \langle I_{y}(y,z)\rangle, \qquad (21)$$

式中

$$I_{X}(X,z) = \frac{k}{8z \sqrt{A'_{1}A'_{2} - B'^{2}}} \sum_{m=0}^{1} \sum_{n=0}^{1} \exp\left\{\frac{\Omega_{0}^{2}\left[A'_{1} + A'_{2} + 2(-1)^{m+n}B'\right]}{4(A'_{1}A'_{2} - B'^{2})}\right\} \times \exp\left[(D_{1} + D_{2} + 2G)X^{2} + 2(F_{1} + F_{2})X\right], \quad X = x, y.$$
(22)

对于能量传输等应用领域,关心的是远场特定面积内的桶中功率(PIB, P_{IB})。考虑光束截断造成能量损耗,远场光斑的桶中功率为

$$P'_{\rm IB} = \gamma(a_0) \times P_{\rm IB}, \qquad (23)$$

式中 $\gamma(a_0)$ 表征光束截断对传输能量的影响。由(1)式可得

$$\begin{split} \gamma(a_{0}) &= \frac{\int_{-a_{0}}^{a_{0}} \int_{-\infty}^{a_{0}} |u(\boldsymbol{r},0)|^{2} dx dy}{\int_{-\infty-\infty}^{\infty-\infty} |u(\boldsymbol{r},0)|^{2} dx dy} = \frac{H^{2}}{\left[1 + \exp(w_{0}^{2} \Omega_{0}^{2}) + 2\exp\left(\frac{w_{0}^{2} \Omega_{0}^{2}}{2}\right)\right]}, \end{split}$$
(24)
$$H &= \frac{1}{4} \sum_{h=0}^{1} \sum_{j=0}^{1} \exp\left\{\frac{w_{0}^{2} \Omega_{0}^{2}}{4} \left[1 + (-1)^{h+j}\right]\right\} \left\{ \operatorname{erf}\left\{\frac{\sqrt{2}}{w_{0}}a_{0} - \frac{w_{0} \Omega_{0} \left[(-1)^{h} + (-1)^{j}\right]}{2\sqrt{2}}\right\} + \operatorname{erf}\left\{\frac{\sqrt{2}}{w_{0}}a_{0} + \frac{w_{0} \Omega_{0} \left[(-1)^{h} + (-1)^{j}\right]}{2\sqrt{2}}\right\} \right\}. \end{split}$$
(25)

0502008-3

可计算得 P_B为

$$P_{\rm B} = \frac{\int_{-h-h}^{h} \langle I(\mathbf{r},z) \rangle dxdy}{\int_{-\infty-\infty}^{\infty} \langle I(\mathbf{r},z) \rangle dxdy} = \frac{\sum_{p=1}^{M} \sum_{q=1}^{M} A_{p}A_{q}^{*}L^{2}}{\sum_{p=1}^{M} \sum_{q=1}^{M} A_{p}A_{q}^{*}(L')^{2}},$$

$$L = \frac{k}{8z \sqrt{A_{1}'A_{2}'-B'^{2}}} \sum_{m=0}^{1} \sum_{n=0}^{1} \exp\left\{\frac{\Omega_{0}^{2} \left[A_{1}'+A_{2}'+2(-1)^{m+n}B'\right]}{4(A_{1}'A_{2}'-B'^{2})}\right\} \exp\left[\left(\frac{F_{1}+F_{2}}{\sqrt{-D_{1}-D_{2}-2G}}\right)^{2}\right] \times \left[\exp\left(\sqrt{-D_{1}-D_{2}-2G}h-\frac{F_{1}+F_{2}}{\sqrt{-D_{1}-D_{2}-2G}}\right)+\exp\left(\sqrt{-D_{1}-D_{2}-2G}h+\frac{F_{1}+F_{2}}{\sqrt{-D_{1}-D_{2}-2G}}\right)\right],$$

$$L' = \frac{k}{4z \sqrt{A_{1}'A_{2}'-B'^{2}}} \sum_{m=0}^{1} \sum_{n=0}^{1} \exp\left\{\frac{\Omega_{0}^{2} \left[A_{1}'+A_{2}'+2(-1)^{m+n}B'\right]}{4(A_{1}'A_{2}'-B'^{2})}\right\} \exp\left[\left(\frac{F_{1}+F_{2}}{\sqrt{-(D_{1}+D_{2}+2G)}}\right)^{2}\right],$$
(26)

式中 erf(•)为误差函数,h 为桶半径。

利用(21)~(28)式可以研究截断部分相干双曲 余弦高斯光束在非 Kolmogorov 湍流中的传输。

3 数值计算

假设截断部分相干双曲余弦高斯光束准直发射 (焦距 $F \rightarrow \infty$), $\tilde{C}_n^2 = 1 \times 10^{-14} \text{ m}^{3-\alpha}$, $l_0 = 0.001 \text{ m}$, $L_0 = 5 \text{ m}$, $\sigma_0 = 0.01 \text{ m}$, z = 5 km。定义归一化光 强为

$$I_{\text{Normalized}} = \frac{I}{I_{\text{peak}}},$$
 (29)

式中 I_{peak} 为光强的峰值。在无截断情况下,z=5 km 处光场分布如图 1 所示。从图 1 可以看出, Ω_0 对远 场光场分布产生重要影响: Ω_0 越小时,光场分布越 集中,能量集中度高;当 Ω_0 增大时,光场分成多个 瓣,能量集中度下降。

图 1 不同 Ω_0 时的远场光强分布。(a) $\Omega_0 = 5 \text{ m}^{-1}$; (b) $\Omega_0 = 10 \text{ m}^{-1}$; (c) $\Omega_0 = 20 \text{ m}^{-1}$; (d) 一维光强分布(y=0) Fig. 1 Intensity distributions for different Ω_0 . (a) $\Omega_0 = 5 \text{ m}^{-1}$; (b) $\Omega_0 = 10 \text{ m}^{-1}$; (c) $\Omega_0 = 20 \text{ m}^{-1}$; (d) normalized intensity at y=0

当出射光束被截断时,图2给出了不同截断孔 径下的光场分布(α=3.67)。由图2可以看出,截断 光束的传输特性不同于无截断光束:随着截断孔径 减小,光场分布趋于高斯分布并逐渐重合。

当光束在非 Kolmogorov 湍流中传输时(α= 3.05),光场分布如图3所示。比较图2与图3,可

图 2 不同孔径时的远场一维光强分布(y=0)。(a) $a_0 = 1$ m; (b) $a_0 = 0.5$ m; (c) $a_0 = 0.2$ m; (d) $a_0 = 0.1$ m Fig. 2 Far-field intensity distributions for different truncation apertures (y=0). (a) $a_0 = 1$ m; (b) $a_0 = 0.5$ m; (c) $a_0 = 0.2$ m; (d) $a_0 = 0.1$ m

图 3 非 Kolmogorov 湍流中(α=3.05),不同孔径时远场一维光强分布(y=0)。(a) a₀=1 m; (b) a₀=0.5 m; (c) a₀=0.2 m

Fig. 3 Intensity distributions for different truncation apertures in non-Kolmogorov turbulence (α =3.05, y=0). (a) $a_0 = 1$ m; (b) $a_0 = 0.5$ m; (c) $a_0 = 0.2$ m 知光束在非 Kolmogorov 湍流中的传输不同于 Kolmogorov 湍流中的传输:在 α =3.05时,光场分 布呈高斯分布,并在截断作用下不断重合。

图 4 给出了在不同截断孔径情况下,不同湍流

中的光场分布。从图 4 可以看出:在截断孔径不变的情况下,随着 α 减小,光场分布趋于高斯分布;在 α 不变的情况下,随着截断孔径减小,光场分布变成 高斯分布。

图 4 不同截断情况下,不同湍流中的一维光强分布(y=0)。(a) $a_0 = 1$ m; (b) $a_0 = 0.5$ m; (c) $a_0 = 0.2$ m Fig. 4 Intensity distributions for different truncation apertures in different turbulences (y=0). (a) $a_0 = 1$ m; (b) $a_0 = 0.5$ m; (c) $a_0 = 0.2$ m

图 5 桶中功率 $P_{\rm B}$ 随 α 的变化。(a) z=5 km; (b) z=10 km; (c) z=5 km; (d) z=10 km Fig. 5 $P_{\rm IB}$ as a function of α . (a) z=5 km; (b) z=10 km; (c) z=5 km; (d) z=10 km

图 5 给出了不同传输距离桶中功率随 α 的变 化。其中图 5(a)和(b)中 $\Omega_0 = 10 \text{ m}^{-1}, h = 0.2 \text{ m};$ 图 5(c)和(d)中, $a_0 = 0.2 \text{ m}, h = 0.2 \text{ m}$ 。分析可知: 随着 α 值增大,桶中功率先减小,当 $\alpha = 3.06$ 时,桶 中功率减到最小值,继续增大 α 值,桶中功率不断增 加;随着截断孔径减小,桶中功率先增加,当 $a_0 <$ 0.6 m后,随着截断孔径减小,桶中功率也减小;随 着 Ω。增大,桶中功率下降。由以上分析可知:当截 断部分相干双曲余弦高斯光束在湍流中传输时,存 在最优截断孔径,同时湍流特性和光束特性对远场 桶中功率均会产生重要影响。(1)式可以写为

$$u(\mathbf{r},0) = \exp\left(\frac{\Omega_0^2 w_0^2}{2}\right) \sum_{r=0}^{1} \sum_{s=0}^{1} \exp\left\{-\frac{\left[x - \frac{(-1)^r \Omega_0 w_0^2}{2}\right]^2 + \left[y - \frac{(-1)^s \Omega_0 w_0^2}{2}\right]^2}{w_0^2}\right\}.$$
 (30)

由(30)式可知,双曲余弦高斯光束可以表示为 四束高斯光束构成的 2×2 光束阵列,因此,由于高 斯光束的特性,双曲余弦高斯光束远场会出现一个 主瓣、多个旁瓣。由于截断孔径的衍射作用,中央主 瓣能量增加;同时,截断会造成能量损失。在上述效 应的作用下,存在一个最优截断孔径^[37]。

4 结 论

本文对截断部分相干双曲余弦高斯光束在非 Kolmogorov湍流大气中的传输特性进行了计算与 分析,基于广义惠更斯-菲涅耳原理,推导了光强分 布和桶中功率随传输距离的演变公式。计算结果表 明:截断部分相干双曲余弦高斯光束在非 Kolmogorov湍流中的传输特性不同于 Kolmgorov 湍流中的传输;光束截断孔径减小或α减小均会加 速光场分布向高斯分布演化;当截断部分相干双曲 余弦高斯光束在湍流中传输时,存在最优截断孔径, 同时湍流特性和光束特性对远场桶中功率均会产生 重要影响。本文结果可为远距离遥感、成像和通信 等系统设计提供一定的参考。

参考文献

- 1 H. T. Eyyuboğlu, Y. Baykal, Y. Cai. Scintillations of laser array beams[J]. Appl. Phys. B, 2008, 91(2): 265~271
- 2 Y. Baykal, H. T. Eyyuboğlu, Y. Cai. Scintillations of partially coherent multiple Gaussian beams in turbulence[J]. Appl. Opt., 2009, 48(10): 1943~1954
- 3 Y. Zhu, D. Zhao, X. Du. Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere [J]. Opt. Express, 2008, 16(22): 18437~18442
- 4 X. Li, X. Chen, X. Ji. Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite-Gaussian beams [J]. Opt. Commun., 2009, 282(1): 7~13
- 5 X. Ji, T. Zhang, X. Jia. Beam propagation factor of partially coherent Hermite-Gaussian array beams [J]. J. Opt. A: Pure Appl. Opt., 2009, 11(10): 105705
- 6 B. Lü, H. Ma. Beam propagation properties of radial laser arrays[J]. J. Opt. Soc. Am. A, 2000, 17(11): 2005~2009
- 7 P. Zhou, Z. Liu, X. Xu et al.. Propagation of phase-locked

partially coherent flattened beam array in turbulent atmosphere [J]. Opt. Lasers Eng., 2008, 47(11): $1254 \sim 1258$

- 8 X. Chu, Z. Liu, Y. Wu. Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path[J]. J. Opt. Soc. Am. A, 2008, 25(1): 74~79
- 9 Y. Cai, Y. Chen, H. T. Eyyuboglu *et al.*. Propagation of laser array beams in a turbulent atmosphere [J]. *Appl. Phys. B*, 2007, 88(3): 467~475
- 10 Y. Gu, G. Gbur. Scintillation of Airy beam arrays in atmospheric turbulence [J]. Opt. Lett., 2010, 35 (20): 3456~3458
- 11 Li Binzhong, Lü Baida. Propagation transform characteristics of beams from stochastic electromagnetic beam array [J]. Acta Optica Sinica, 2011, 31(s1): s100406
 李宾中, 吕百达. 随机电磁光束阵列的光束传输变换特性[J]. 光学学报, 2011, 31(s1): s100406
- 12 Zhou Guoquan. Investigation in construction and propagation properties of a higher-order Lorentz-Gauss beam[J]. Acta Optica Sinica, 2011, 31(s1): s100402 周国泉. 高阶洛伦兹-高斯光束的构建及其传输特性研究[J]. 光 学学报, 2011, 31(s1): s100402
- 13 Zhang Xiaping. Propagation of elegant Hermite-Gaussian beams in strongly nonlocal nonlinear media [J]. Acta Optica Sinica, 2011, 31(11): 1119002
 张霞萍. 强非局域非线性介质中复宗量厄米-高斯光束的传输 []]. 光学学报,2011,31(11): 1119002
- 14 Sun Shunhong, Pu Jixiong. Generation and propagation of double-vortex beams[J]. Acta Optica Sinica, 2011, 31(s1): s100520 孙顺红,蒲继雄. 双涡旋光束的产生与传输[J]. 光学学报, 2011, 31(s1): s100520

15 Su Qianqian, Zhang Guowen, Tao Hua *et al.*. Properties of the intensity distribution and the angular spectrum of a Gaussian beam with local phase modulation[J]. *Chinese J. Lasers*, 2011, 38(10): 1002005 苏倩倩,张国文,陶 华等. 高斯光束经局域相位调制后的光强

分布和角谱特性[J]. 中国激光, 2011, 38(10): 1002005

16 Tao Hua, Zhang Guowen, Pu Jixiong. Stochastic electromagnetic beams focused by a modulated lens[J]. Acta Optica Sinica, 2011, 31(s1): s100411
陶 华,张国文,蒲继雄.随机电磁光束经振幅调制透镜的聚焦

特性[J]. 光学学报, 2011, **31**(s1): s100411

- 17 Zhao Tianzhuo, Fan Zhongwei, Yu Jin *et al.*. Monitoring and compensation of large size flat-top laser beam [J]. *Acta Optica Sinica*, 2011, **31**(4): 0412004
 赵天卓,樊仲维,余 锦等. 大尺寸平顶激光光束的监测补偿 [J]. 光学学报, 2011, **31**(4): 0412004
- 18 Zhang Weilin, Zhang Tingrong, Li Yantao *et al.*. Propagation properties of controllable dark-hollow beams in uniaxial crystals

[J]. Acta Optica Sinica, 2011, **31**(8): 0826001

张伟林,张廷蓉,李艳桃等.可控空心光束在单轴晶体中的传输 特性[J].光学学报,2011,**31**(8):0826001

- 19 X. Chu. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere [J]. Opt. Express, 2007, 15(26): 17613~17618
- 20 X. Ji, X. Chen, B. Lü. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. J. Opt. Soc. Am. A, 2008, 25(1): 21~28
- 21 A. Zilberman, E. Golbraikh, N. S. Kopeika *et al.*. Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence [J]. *Atmos. Res.*, 2008, **88**(1): 66~77
- 22 I. Toselli, L. C. Andrews, R. L. Phillips *et al.*. Free space optical system performance for laser beam propagation through non Kolmogorov turbulence for uplink and downlink paths[C]. *SPIE*, 2007, **6708**, 670803
- 23 C. Rao, W. Jiang, N. Ling. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence [J]. J. Mod. Opt., 2000, 47 (6): 1111~1126
- 24 G. Wu, H. Guo, S. Yu *et al.*. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence[J]. Opt. Lett., 2010, 35(5); 715~717
- 25 P. Zhou, Y. Ma, X. Wang *et al.*. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence [J]. *Opt. Lett.*, 2010, **35**(7): 1043~1045
- 26 O. Korotkova, E. Shchepakina. Color changes in stochastic light fields propagating in non-Kolmogorov turbulence[J]. Opt. Lett., 2010, 35(22): 3772~3774
- 27 J. Cang, X. Liu. Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence [J]. Opt. Lett., 2011, 36 (17):

3335~3337

- 28 H. Tang, B. Ou, B. Luo *et al.*. Average spreading of a radial Gaussian beam array in non-Kolmogorov turbulence[J]. J. Opt. Soc. Am. A, 2011, 28(6): 1016~1021
- 29 E. Shchepakina, O. Korotkova. Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence [J]. Opt. Express, 2010, 18 (10): 10650~10658
- 30 Huafeng Xu, Zhifeng Cui, Jun Qu. Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence[J]. Opt. Express, 2011, 19(22): 21163~21173
- 31 Yucheng Zhang, Yuanjun Song, Zongrong Chen et al.. Virtual sources for a cosh-Gaussian beam [J]. Opt. Lett., 2007, 32(3): 292~294
- 32 Halil T. Eyyuboglu, Yahya Baykal. Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere[J]. Appl. Opt., 2005, 44(6): 976~983
- 33 Xiuxiang Chu, Chunhong Qiao, Xiaoxing Feng. The effect of non-Kolmogorov turbulence on the propagation of cosh-Gaussian beam[J]. Opt. Commun., 2010, 283(18): 3398~3403
- 34 Halil Tanyer Eyyuboğlu, Yahya Baykal. Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent atmosphere[J]. Opt. Express, 2004, 12(20): 4659~4674
- 35 D. Ding, X. Liu. Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture [J]. J. Opt. Soc. Am. A, 1999, 16(6): 1286~1293
- 36 J. J. Wen, M. A. Breazeale. A diffraction beam field expressed as the superposition of Gaussian beams [J]. J. Acoust. Soc. Am., 1988, 83(5): 1752~1756
- 37 Pu Zhou, Xiaolin Wang, Yanxing Ma et al.. Optimal truncation of element beam in a coherent fiber laser array [J]. Chin. Phys. Lett., 2009, 26(4): 044206

栏目编辑: 王晓琰